Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Gen Virol ; 104(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38059479

RESUMEN

Flavivirids are small, enveloped, positive-sense RNA viruses from the family Flaviviridae with genomes of ~9-13 kb. Metatranscriptomic analyses of metazoan organisms have revealed a diversity of flavivirus-like or flavivirid viral sequences in fish and marine invertebrate groups. However, no flavivirus-like virus has been identified in amphibians. To remedy this, we investigated the virome of the European common frog (Rana temporaria) in the UK, utilizing high-throughput sequencing at six catch locations. De novo assembly revealed a coding-complete virus contig of a novel flavivirid ~11.2 kb in length. The virus encodes a single ORF of 3456 aa and 5' and 3' untranslated regions (UTRs) of 227 and 666 nt, respectively. We named this virus Rana tamanavirus (RaTV), as BLASTp analysis of the polyprotein showed the closest relationships to Tamana bat virus (TABV) and Cyclopterus lumpus virus from Pteronotus parnellii and Cyclopterus lumpus, respectively. Phylogenetic analysis of the RaTV polyprotein compared to Flavivirus and Flavivirus-like members indicated that RaTV was sufficiently divergent and basal to the vertebrate Tamanavirus clade. In addition to the Mitcham strain, partial but divergent RaTV, sharing 95.64-97.39 % pairwise nucleotide identity, were also obtained from the Poole and Deal samples, indicating that RaTV is widespread in UK frog samples. Bioinformatic analyses of predicted secondary structures in the 3'UTR of RaTV showed the presence of an exoribonuclease-resistant RNA (xrRNA) structure standard in flaviviruses and TABV. To examine this biochemically, we conducted an in vitro Xrn1 digestion assay showing that RaTV probably forms a functional Xrn1-resistant xrRNA.


Asunto(s)
Flaviviridae , Flavivirus , Animales , Flaviviridae/genética , Rana temporaria/genética , Filogenia , ARN Viral/genética , ARN Viral/química , Flavivirus/genética , Poliproteínas/genética , Reino Unido , Genoma Viral
2.
Viruses ; 15(12)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38140643

RESUMEN

Cytorhabdoviruses (genus Cytorhabdovirus, family Rhabdoviridae) are plant-infecting viruses with enveloped, bacilliform virions. Established members of the genus Cytorhabdovirus have unsegmented single-stranded negative-sense RNA genomes (ca. 10-16 kb) which encode four to ten proteins. Here, by exploring large publicly available metatranscriptomics datasets, we report the identification and genomic characterization of 93 novel viruses with genetic and evolutionary cues of cytorhabdoviruses. Strikingly, five unprecedented viruses with tri-segmented genomes were also identified. This finding represents the first tri-segmented viruses in the family Rhabdoviridae, and they should be classified in a novel genus within this family for which we suggest the name "Trirhavirus". Interestingly, the nucleocapsid and polymerase were the only typical rhabdoviral proteins encoded by those tri-segmented viruses, whereas in three of them, a protein similar to the emaravirus (family Fimoviridae) silencing suppressor was found, while the other predicted proteins had no matches in any sequence databases. Genetic distance and evolutionary insights suggest that all these novel viruses may represent members of novel species. Phylogenetic analyses, of both novel and previously classified plant rhabdoviruses, provide compelling support for the division of the genus Cytorhabdovirus into three distinct genera. This proposed reclassification not only enhances our understanding of the evolutionary dynamics within this group of plant rhabdoviruses but also illuminates the remarkable genomic diversity they encompass. This study not only represents a significant expansion of the genomics of cytorhabdoviruses that will enable future research on the evolutionary peculiarity of this genus but also shows the plasticity in the rhabdovirus genome organization with the discovery of tri-segmented members with a unique evolutionary trajectory.


Asunto(s)
Expediciones , Virus de Plantas , Virus ARN , Rhabdoviridae , Rhabdoviridae/genética , Filogenia , Genoma Viral , Virus ARN/genética , Virus de Plantas/genética , Enfermedades de las Plantas
4.
J Gen Virol ; 104(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37622664

RESUMEN

In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Asunto(s)
Virus ARN de Sentido Negativo , Virus ARN , Virus ARN/genética , ARN Polimerasa Dependiente del ARN/genética
6.
Viruses ; 15(6)2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37376681

RESUMEN

The second wave of COVID-19 occurred in South America in early 2021 and was mainly driven by Gamma and Lambda variants. In this study, we aimed to describe the emergence and local genomic diversity of the SARS-CoV-2 Lambda variant in Argentina, from its initial entry into the country until its detection ceased. Molecular surveillance was conducted on 9356 samples from Argentina between October 2020 and April 2022, and sequencing, phylogenetic, and phylogeographic analyses were performed. Our findings revealed that the Lambda variant was first detected in Argentina in January 2021 and steadily increased in frequency until it peaked in April 2021, with continued detection throughout the year. Phylodynamic analyses showed that at least 18 introductions of the Lambda variant into the country occurred, with nine of them having evidence of onward local transmission. The spatial--temporal reconstruction showed that Argentine clades were associated with Lambda sequences from Latin America and suggested an initial diversification in the Metropolitan Area of Buenos Aires before spreading to other regions in Argentina. Genetic analyses of genome sequences allowed us to describe the mutational patterns of the Argentine Lambda sequences and detect the emergence of rare mutations in an immunocompromised patient. Our study highlights the importance of genomic surveillance in identifying the introduction and geographical distribution of the SARS-CoV-2 Lambda variant, as well as in monitoring the emergence of mutations that could be involved in the evolutionary leaps that characterize variants of concern.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Argentina/epidemiología , SARS-CoV-2/genética , Filogenia , COVID-19/epidemiología , Mutación
7.
Arch Virol ; 168(7): 184, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37338667

RESUMEN

The family Flaviviridae is composed of viruses with a positive-sense single-stranded RNA genome and includes viruses that are important veterinary and human pathogens. Most members of the family are arthropod- and vertebrate-infecting viruses, but more recently, divergent flavi-like viruses have been identified in marine invertebrate and vertebrate hosts. The striking discovery of gentian Kobu-sho-associated virus (GKaV), along with a recent report of a related virus from carrot, has expanded the known host range of flavi-like viruses to plants, suggesting they could be grouped in a proposed genus tentatively named "Koshovirus". Here, we report the identification and characterization of two novel RNA viruses that show a genetic and evolutionary relationship to the previously identified "koshoviruses". Their genome sequences were obtained from transcriptomic datasets of the flowering plants Coptis teeta and Sonchus asper. These two new viruses, which we have named "coptis flavi-like virus 1" (CopFLV1) and "sonchus flavi-like virus 1" (SonFLV1), are members of novel species characterized by the longest monopartite RNA genome observed so far among plant-associated RNA viruses, which is ca. 24 kb in size. Structural and functional annotations of the polyproteins of all koshoviruses resulted in the detection not only of the expected helicase and RNA-dependent RNA polymerase but also of several additional divergent domains, including AlkB oxygenase, trypsin-like serine protease, methyltransferase, and envelope E1 flavi-like domains. Phylogenetic analysis showed that CopFLV1, SonFLV1, GKaV, and the carrot flavi-like virus were grouped together in a monophyletic clade, strongly supporting the recent proposal for creation of the genus "Koshovirus" for the group of related plant-infecting flavi-like viruses.


Asunto(s)
Flaviviridae , Virus de Plantas , Virus ARN , Animales , Humanos , Filogenia , Virus ARN/genética , Flaviviridae/genética , Virus de Plantas/genética , Plantas , ARN , Genoma Viral
8.
Commun Biol ; 6(1): 517, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179447

RESUMEN

Dermanyssus gallinae is a blood-feeding mite that parasitises wild birds and farmed poultry. Its remarkably swift processing of blood, together with the capacity to blood-feed during most developmental stages, makes this mite a highly debilitating pest. To identify specific adaptations to digestion of a haemoglobin-rich diet, we constructed and compared transcriptomes from starved and blood-fed stages of the parasite and identified midgut-enriched transcripts. We noted that midgut transcripts encoding cysteine proteases were upregulated with a blood meal. Mapping the full proteolytic apparatus, we noted a reduction in the suite of cysteine proteases, missing homologues for Cathepsin B and C. We have further identified and phylogenetically analysed three distinct transcripts encoding vitellogenins that facilitate the reproductive capacity of the mites. We also fully mapped transcripts for haem biosynthesis and the ferritin-based system of iron storage and inter-tissue trafficking. Additionally, we identified transcripts encoding proteins implicated in immune signalling (Toll and IMD pathways) and activity (defensins and thioester-containing proteins), RNAi, and ion channelling (with targets for commercial acaricides such as Fluralaner, Fipronil, and Ivermectin). Viral sequences were filtered from the Illumina reads and we described, in part, the RNA-virome of D. gallinae with identification of a novel virus, Red mite quaranjavirus 1.


Asunto(s)
Infestaciones por Ácaros , Ácaros , Enfermedades de las Aves de Corral , Animales , Aves de Corral , Infestaciones por Ácaros/veterinaria , Infestaciones por Ácaros/parasitología , RNA-Seq , Viroma , Pollos , Ácaros/genética
9.
Viruses ; 15(4)2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-37112821

RESUMEN

Ophioviruses (genus Ophiovirus, family Aspiviridae) are plant-infecting viruses with non-enveloped, filamentous, naked nucleocapsid virions. Members of the genus Ophiovirus have a segmented single-stranded negative-sense RNA genome (ca. 11.3-12.5 kb), encompassing three or four linear segments. In total, these segments encode four to seven proteins in the sense and antisense orientation, both in the viral and complementary strands. The genus Ophiovirus includes seven species with viruses infecting both monocots and dicots, mostly trees, shrubs and some ornamentals. From a genomic perspective, as of today, there are complete genomes available for only four species. Here, by exploring large publicly available metatranscriptomics datasets, we report the identification and molecular characterization of 33 novel viruses with genetic and evolutionary cues of ophioviruses. Genetic distance and evolutionary insights suggest that all the detected viruses could correspond to members of novel species, which expand the current diversity of ophioviruses ca. 4.5-fold. The detected viruses increase the tentative host range of ophioviruses for the first time to mosses, liverwort and ferns. In addition, the viruses were linked to several Asteraceae, Orchidaceae and Poaceae crops/ornamental plants. Phylogenetic analyses showed a novel clade of mosses, liverworts and fern ophioviruses, characterized by long branches, suggesting that there is still plenty of unsampled hidden diversity within the genus. This study represents a significant expansion of the genomics of ophioviruses, opening the door to future works on the molecular and evolutionary peculiarity of this virus genus.


Asunto(s)
Virus de Plantas , Virus ARN , Filogenia , Virus ARN/genética , Plantas/genética , Virión , Virus de Plantas/genética , Genoma Viral
10.
Viruses ; 15(2)2023 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-36851525

RESUMEN

The COVID-19 pandemic has lately been driven by Omicron. This work aimed to study the dynamics of SARS-CoV-2 Omicron lineages during the third and fourth waves of COVID-19 in Argentina. Molecular surveillance was performed on 3431 samples from Argentina, between EW44/2021 and EW31/2022. Sequencing, phylogenetic and phylodynamic analyses were performed. A differential dynamic between the Omicron waves was found. The third wave was associated with lineage BA.1, characterized by a high number of cases, very fast displacement of Delta, doubling times of 3.3 days and a low level of lineage diversity and clustering. In contrast, the fourth wave was longer but associated with a lower number of cases, initially caused by BA.2, and later by BA.4/BA.5, with doubling times of about 10 days. Several BA.2 and BA.4/BA.5 sublineages and introductions were detected, although very few clusters with a constrained geographical distribution were observed, suggesting limited transmission chains. The differential dynamic could be due to waning immunity and an increase in population gatherings in the BA.1 wave, and a boosted population (for vaccination or recent prior immunity for BA.1 infection) in the wave caused by BA2/BA.4/BA.5, which may have limited the establishment of the new lineages.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Argentina/epidemiología , Pandemias , Filogenia
11.
Virus Res ; 323: 198936, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36181975

RESUMEN

Studies about the evolution of SARS-CoV-2 lineages in different backgrounds such as naive populations are still scarce, especially from South America. This work aimed to study the introduction and diversification pattern of SARS-CoV-2 during the first year of the COVID-19 pandemic in the Northwestern Argentina (NWA) region and to analyze the evolutionary dynamics of the main lineages found. In this study, we analyzed a total of 260 SARS-CoV-2 whole-genome sequences from Argentina, belonging to the Provinces of Jujuy, Salta, and Tucumán, from March 31st, 2020, to May 22nd, 2021, which covered the full first wave and the early second wave of the COVID-19 pandemic in Argentina. In the first wave, eight lineages were identified: B.1.499 (76.9%), followed by N.5 (10.2%), B.1.1.274 (3.7%), B.1.1.348 (3.7%), B.1 (2.8%), B.1.600 (0.9%), B.1.1.33 (0.9%) and N.3 (0.9%). During the early second wave, the first-wave lineages were displaced by the introduction of variants of concern (VOC) (Alpha, Gamma), or variants of interest (VOI) (Lambda, Zeta, Epsilon) and other lineages with more limited distribution. Phylodynamic analyses of the B.1.499 and N.5, the two most prevalent lineages in the NWA, revealed that the rate of evolution of lineage N.5 (7.9 × 10-4 substitutions per site per year, s/s/y) was a ∼40% faster than that of lineage B.1.499 (5.6 × 10-4 s/s/y), although both are in the same order of magnitude than other non-VOC lineages. No mutations associated with a biological characteristic of importance were observed as signatures markers of the phylogenetic groups established in Northwestern Argentina, however, single sequences in non-VOC lineages did present mutations of biological importance or associated with VOCs as sporadic events, showing that many of these mutations could emerge from circulation in the general population. This study contributed to the knowledge about the evolution of SARS-CoV-2 in a pre-vaccination and without post-exposure immunization period.

12.
Viruses ; 14(11)2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36366501

RESUMEN

Morbilliviruses are negative-sense single-stranded monosegmented RNA viruses in the family Paramyxoviridae (order Mononegavirales). Morbilliviruses infect diverse mammals including humans, dogs, cats, small ruminants, seals, and cetaceans, which serve as natural hosts. Here, I report the identification and characterization of novel viruses detected in public RNAseq datasets of South American long-haired and olive field mice. The divergent viruses dubbed Ratón oliváceo morbillivirus (RoMV) detected in renal samples from mice collected from Chile and Argentina are characterized by an unusually large genome including long intergenic regions and the presence of an accessory protein between the F and H genes redounding in a genome architecture consisting in 3'-N-P/V/C-M-F-hp-H-L-5'. Structural and functional annotation, genetic distance, and evolutionary insights suggest that RoMV is a member of a novel species within genus Morbillivirus tentatively named as South American mouse morbillivirus. Phylogenetic analysis suggests that this mouse morbillivirus is closely related to and clusters into a monophyletic group of novel rodent-borne morbilliviruses. This subclade of divergent viruses expands the host range, redefines the genomic organization and provides insights on the evolutionary history of genus Morbillivirus.


Asunto(s)
Infecciones por Morbillivirus , Morbillivirus , Animales , Ratones , Chile , Morbillivirus/genética , Infecciones por Morbillivirus/veterinaria , Filogenia
13.
Pathogens ; 11(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36297184

RESUMEN

The genus Varicosavirus is one of six genera of plant-infecting rhabdoviruses. Varicosaviruses have non-enveloped, flexuous, rod-shaped virions and a negative-sense, single-stranded RNA genome. A distinguishing feature of varicosaviruses, which is shared with dichorhaviruses, is a bi-segmented genome. Before 2017, a sole varicosavirus was known and characterized, and then two more varicosaviruses were identified through high-throughput sequencing in 2017 and 2018. More recently, the number of known varicosaviruses has substantially increased in concert with the extensive use of high-throughput sequencing platforms and data mining approaches. The novel varicosaviruses have revealed not only sequence diversity, but also plasticity in terms of genome architecture, including a virus with a tentatively unsegmented genome. Here, we report the discovery of 45 novel varicosavirus genomes which were identified in publicly available metatranscriptomic data. The identification, assembly, and curation of the raw Sequence Read Archive reads has resulted in 39 viral genome sequences with full-length coding regions and 6 with nearly complete coding regions. The highlights of the obtained sequences include eight varicosaviruses with unsegmented genomes, which are linked to a phylogenetic clade associated with gymnosperms. These findings have resulted in the most complete phylogeny of varicosaviruses to date and shed new light on the phylogenetic relationships and evolutionary landscape of this group of plant rhabdoviruses. Thus, the extensive use of sequence data mining for virus discovery has allowed us to unlock of the hidden genetic diversity of varicosaviruses, the largely neglected plant rhabdoviruses.

14.
Viruses ; 14(10)2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36298852

RESUMEN

An emerging virus isolated from papaya (Carica papaya) crops in northwestern (NW) Argentina was sequenced and characterized using next-generation sequencing. The resulting genome is 6667-nt long and encodes five open reading frames in an arrangement typical of other potexviruses. This virus appears to be a novel member within the genus Potexvirus. Blast analysis of RNA-dependent RNA polymerase (RdRp) and coat protein (CP) genes showed the highest amino acid sequence identity (67% and 71%, respectively) with pitaya virus X. Based on nucleotide sequence similarity and phylogenetic analysis, the name papaya virus X is proposed for this newly characterized potexvirus that was mechanically transmitted to papaya plants causing chlorotic patches and severe mosaic symptoms. Papaya virus X (PapVX) was found only in the NW region of Argentina. This prevalence could be associated with a recent emergence or adaptation of this virus to papaya in NW Argentina.


Asunto(s)
Carica , Potexvirus , Potexvirus/genética , Filogenia , Genoma Viral , Argentina , ARN Polimerasa Dependiente del ARN , Enfermedades de las Plantas
15.
Environ Microbiol ; 24(12): 6463-6475, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36085554

RESUMEN

Mitoviruses (family Mitoviridae) are small capsid-less RNA viruses that replicate in the mitochondria of fungi and plants. However, to date, the only authentic animal mitovirus infecting an insect was identified as Lutzomyia longipalpis mitovirus 1 (LulMV1). Public databases of transcriptomic studies from several animals may be a good source for identifying the often missed mitoviruses. Consequently, a search of mitovirus-like transcripts at the NCBI transcriptome shotgun assembly (TSA) library, and a search for the mitoviruses previously recorded at the NCBI non-redundant (nr) protein sequences library, were performed in order to identify new mitovirus-like sequences associated with animals. In total, 10 new putative mitoviruses were identified in the TSA database and 8 putative mitoviruses in the nr protein database. To our knowledge, these results represent the first evidence of putative mitoviruses associated with poriferan, cnidarians, echinoderms, crustaceans, myriapods and arachnids. According to different phylogenetic inferences using the maximum likelihood method, these 18 putative mitoviruses form a robust monophyletic lineage with LulMV1, the only known animal-infecting mitovirus. These findings based on in silico procedures provide strong evidence for the existence of a clade of putative mitoviruses associated with animals, which has been provisionally named 'kvinmitovirus'.


Asunto(s)
Virus ARN , Genoma Viral , Mitocondrias/genética , Filogenia , Enfermedades de las Plantas/microbiología , Virus ARN/genética , ARN Viral
16.
Gene ; 843: 146806, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35963497

RESUMEN

Here, we report the identification and characterization of four novel DNA viruses from Welwitschia mirabilis transcriptomic and genomic datasets. Complete circular virus-like sequences with affinity to members of the Caulimoviridae and Geminiviridae families were detected and characterized from Welwitschia mirabilis genomic data. The two newly members of the Caulimoviridae family have been tentatively named as Welwitschia mirabilis virus 1 and 2 (WMV1-WMV2); whereas the two identified geminiviruses were named as Welwitschia mirabilis associated geminivirus A and B (WMaGVA-WMaGVB). Phylogenetic analysis suggests that WMV1-2 belong to a proposed genus of Caulimoviridae-infecting gymnosperms. WMaGVA-B are phylogenetically related with both mastreviruses and capulaviruses and likely represent a distinct evolutionary lineage within geminiviruses. Additionally, we detected several endogenous virus-like elements (EVE) linked to the discovered viruses in the recently reported W. mirabilis genome, suggesting a shared ancient evolutionary history of these viruses and the Welwithschia.


Asunto(s)
Geminiviridae , Mirabilis , ADN , Fósiles , Geminiviridae/genética , Genoma Viral , Humanos , Mirabilis/genética , Filogenia , Viroma
17.
PLoS Biol ; 20(7): e3001680, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35797414

RESUMEN

Early career researchers (ECRs) are important stakeholders leading efforts to catalyze systemic change in research culture and practice. Here, we summarize the outputs from a virtual unconventional conference (unconference), which brought together 54 invited experts from 20 countries with extensive experience in ECR initiatives designed to improve the culture and practice of science. Together, we drafted 2 sets of recommendations for (1) ECRs directly involved in initiatives or activities to change research culture and practice; and (2) stakeholders who wish to support ECRs in these efforts. Importantly, these points apply to ECRs working to promote change on a systemic level, not only those improving aspects of their own work. In both sets of recommendations, we underline the importance of incentivizing and providing time and resources for systems-level science improvement activities, including ECRs in organizational decision-making processes, and working to dismantle structural barriers to participation for marginalized groups. We further highlight obstacles that ECRs face when working to promote reform, as well as proposed solutions and examples of current best practices. The abstract and recommendations for stakeholders are available in Dutch, German, Greek (abstract only), Italian, Japanese, Polish, Portuguese, Spanish, and Serbian.


Asunto(s)
Investigadores , Informe de Investigación , Humanos , Poder Psicológico
18.
Arch Virol ; 167(9): 1785-1803, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35708766

RESUMEN

Tymovirales is an order of viruses with positive-sense RNA genomes that mostly infect plants, but also fungi and insects. The number of genome sequences of viruses that could fit this taxon has been growing in the last few years with the extensive use of high-throughput sequencing. Here, we report the discovery of 31 novel viral genome sequences associated with 27 different host plant species, which were hidden in public databases. These viral sequences were identified through homology searches in more than 3,000 plant transcriptomes from the NCBI Sequence Read Archive (SRA) using known tymovirales sequences as queries. Identification, assembly, and curation of raw SRA reads resulted in 29 viral genome sequences with complete coding regions, and two representing partial genomes. Some of the obtained sequences highlight novel genome organizations for members of the order. Phylogenetic analysis showed that six of the novel viruses are related to alphaflexiviruses, 17 to betaflexiviruses, two to deltaflexiviruses, and six to tymovirids. These findings shed new light on the phylogenetic relationships and evolutionary landscape of this group of viruses. Furthermore, this study illustrates the complexity and genome diversity among members of the order and demonstrates that analyzing public SRA data provides an invaluable tool to accelerate virus discovery and refine virus taxonomy.


Asunto(s)
Virus ARN , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Filogenia , Plantas , Virus ARN/genética
19.
Front Med (Lausanne) ; 8: 755463, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34957143

RESUMEN

SARS-CoV-2 variants with concerning characteristics have emerged since the end of 2020. Surveillance of SARS-CoV-2 variants was performed on a total of 4,851 samples from the capital city and 10 provinces of Argentina, during 51 epidemiological weeks (EWs) that covered the end of the first wave and the ongoing second wave of the COVID-19 pandemic in the country (EW 44/2020 to EW 41/2021). The surveillance strategy was mainly based on Sanger sequencing of a Spike coding region that allows the identification of signature mutations associated with variants. In addition, whole-genome sequences were obtained from 637 samples. The main variants found were Gamma and Lambda, and to a lesser extent, Alpha, Zeta, and Epsilon, and more recently, Delta. Whereas, Gamma dominated in different regions of the country, both Gamma and Lambda prevailed in the most populated area, the metropolitan region of Buenos Aires. The lineages that circulated on the first wave were replaced by emergent variants in a term of a few weeks. At the end of the ongoing second wave, Delta began to be detected, replacing Gamma and Lambda. This scenario is consistent with the Latin American variant landscape, so far characterized by a concurrent increase in Delta circulation and a stabilization in the number of cases. The cost-effective surveillance protocol presented here allowed for a rapid response in a resource-limited setting, added information on the expansion of Lambda in South America, and contributed to the implementation of public health measures to control the disease spread in Argentina.

20.
Preprint en Español | SciELO Preprints | ID: pps-2886

RESUMEN

Since December 2020, the detection of emerging viral variants of SARS-CoV-2 has attracted the attention of the scientific community and governments at the national and international levels. Some versions of the virus characterized by genetic/evolutionary, epidemiological and/or phenotypic changes have been classified by the WHO as alerts for further monitoring, variants of interest (VOI), or variants of concern (VOC). At the international level, the current situation of variants reflects the sustained advance of the VOC Delta, driving new waves in much of the globe. On the other hand, South America, which exhibits an exceptional landscape of variants dominated by the regionally emerged Gamma (VOC) and Lambda (VOI) begins to face Delta's entry into a dynamic equilibrium of tension between viral evolution, immunity of the population associated with the second wave, and the asymmetry of vaccination campaigns and regional health policies. In this review, we present an update of the latest advances regarding the study of these variants, their potential impact on the epidemiological dynamics and vaccine effectiveness, with a special focus on the Latin American situation of the COVID-19 pandemic, in the second half of 2021.


Desde el mes de diciembre de 2020, la detección de variantes virales emergentes del SARS-CoV-2 ha llamado la atención de la comunidad científica y de los gobiernos a nivel nacional e internacional. Algunas versiones del virus caracterizadas por cambios genéticos, epidemiológicos y/o fenotípicos han sido clasificados por la OMS como variantes para monitoreo adicional, variantes de interés (VOI) o variantes de preocupación (VOC). A nivel internacional la situación actual de variantes refleja el avance sostenido de la VOC Delta, impulsando nuevas olas de infecciones en gran parte del mundo. Por otro lado, América del Sur exhibe un paisaje particular de linajes circulantes, dominado por las variantes de emergencia regional Gamma (VOC) y Lambda (VOI). Esta región empieza a afrontar el ingreso de Delta en un equilibrio dinámico de tensión entre la evolución viral, la inmunidad adquirida de la población asociada a la segunda ola, y la asimetría en las campañas de vacunación y en las políticas sanitarias regionales. En esta revisión presentamos una actualización de los últimos avances relativos al estudio de las variantes virales emergentes del SARS-CoV-2, su potencial impacto en la dinámica epidemiológica y en la efectividad vacunal, con especial foco en la situación regional latinoamericana de pandemia de la COVID-19 en el segundo semestre de 2021.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...